EMERGING ISSUES IN NEUROTOXICOLOGY
NOVEMBER 18-21, 2002 / The Peabody Hotel Conference Center / LITTLE ROCK, AR

Monday Aft & Evening 18 NOV 2002 4:30 – 8:00 PM

1:00 – 8:00
Poster & Exhibit Set-up in the Conference Center on the 2nd Floor of The Peabody Hotel. Follow Signs to locate assigned space in Poinsett, Chicot and Grampas Rooms. Posters should be up no later than Wednesday at noon.

2nd Floor Balcony of The Peabody Hotel
4:30
Registration Opens

5:00 – 5:15
“March of the Peabody Ducks”
Led by Duck Master-for-a-Day Joan Cranmer

5:00 – 8:00
Welcoming Reception and Buffet Dinner
Cash Bar and Camaraderie

Tuesday Morning 19 NOV 2002 9:00 – 11:50 AM

SESSION I.
OPENING, WELCOME AND OVERVIEW
Chair: Joan M. Cranmer, PhD

8:30 – 8:35 Opening of the Conference
Joan M. Cranmer, PhD
University of Arkansas for Medical Sciences and Arkansas Children’s Hospital

WELCOME ON BEHALF OF THE HOST INSTITUTIONS

8:35 – 8:40 On Behalf of UAMS
E. Albert Reece, MD, PhD, MBA
Vice Chancellor and Dean, College of Medicine, University of Arkansas for Medical Sciences

8:40 – 8:45 On Behalf of NCTR
Daniel A. Casciano, PhD
Director, National Center for Toxicological Research

8:45 – 8:50 On Behalf of the Pine Bluff Arsenal
Colonel Mark R. Henscheid
Commander, Pine Bluff Arsenal

OVERVIEW OF THE CONFERENCE

8:50 – 9:00 Overview and Goals of NTX XX: Emerging Issues in Neurotoxicology
Joan M. Cranmer, PhD - UAMS & ACH

Tuesday Morning 19 NOV 2002 9:00 – 11:50 AM

SESSION II.
NEUROIMAGING: STRATEGIES TO ILLUMINATE ENVIRONMENT-DISEASE LINKAGES
Focusing on Unique Needs, Tools, Challenges and Strategies for Neurotoxicologists
Chair: William Slikker, Jr., PhD

This session addresses recent technological innovations which now make it possible to apply many in vivo neuroimaging technologies such as positron emission tomography (PET) and magnetic resonance imaging (MRI) to small animals, including nonhuman primates, rats and mice. The availability of these new technologies coincides with progress in developing animal models of various neurodevelopmental and neurodegenerative dysfunctions and improvements in assessment protocols for identifying deficits in animals that correlate well with human deficits. The integration of neuroimaging techniques with traditional neurotoxicological assessments has the potential to enhance greatly the ability to relate behavioral, cognitive or motor dysfunction induced by a toxicant to structural and functional brain pathology.

9:00 – 9:20 Neuroimaging as a New Approach to Neurotoxicology
William Slikker, Jr., PhD
Director Division of Neurotoxicology, NCTR/FDA

9:20 – 9:40 Innovative Imaging Approaches: PET and Its Applications
Ronald C. Walker, MD
Director of PET Research, UAMS

9:40 – 10:15 Small Animal Imaging using Positron Emission Tomography
Arion Chatziianous, PhD - UCLA and Crump Institute for Molecular Imaging

10:15 – 10:30 Break

10:30 – 11:05 Magnetic Resonance Spectroscopic Imaging and Its Potential Application to Clinical Neurotoxicology
H. Cecil Charles, PhD
Duke Image Analysis Laboratory, Duke University

11:05 – 11:40 High Resolution Imaging: From Organism to Molecule
Mark P. Ellisman, PhD
National Center for Microscopy and Imaging Research, University of California - San Diego

11:40 – 11:50 Discussion
Tuesday Afternoon
19 NOV 2002
1:15 – 5:00 PM

SESSION III.
EMERGING TECHNOLOGIES IN NEUROTOXICOLOGY

Chairs:
G. Jean Harry, PhD
Kent E. Vrana, PhD

As in the case of other areas of biology, the study of how chemicals affect the nervous system is being influenced by a number of emerging technologies in addition to new neuroimaging technologies. This session will focus on computational toxicology, microarray technology, genomics, proteomics, metabonomics and bioinformatics. All of these emerging technologies exploit recent discoveries in molecular biology to study effects of chemicals at the genetic or molecular level and/or the use of computer technology to process patterns of biological changes to characterize pathways leading to neurotoxicological effects. Computational toxicology integrates computing and information technology with molecular biology to predict neurotoxicological changes based on knowledge about structure other physical properties of pollutants.

1:15 – 1:30
Emerging Technologies in Neurotoxicology: Overview
G. Jean Harry, PhD
National Institute of Environmental Health Sciences

1:30 – 2:05
Computational Toxicology: An Approach for Prioritizing Chemical Risk Assessment
Steven P. Bradbury, PhD
USEPA/ORD Mid-Continent Ecology Division

2:05 – 2:40
Microarray Technology
Kent E. Vrana, PhD
Wake Forest University School of Medicine

2:40 – 3:15
There’s No Place Like Ome: “Omics” at the NCTR ~ Genomics-Proteomics-Metabonomics-Bioinformatics
Daniel A. Casciano, PhD
National Center for Toxicological Research/FDA

Invitation to Tour the National Center for Toxicological Research
Daniel A. Casciano, PhD - Director, NCTR

3:15 – 3:35
Break

3:35 – 4:00
cDNA Array Analysis of the Changes in Gene Expression Specifically Produced by Neurotoxic Doses of Amphetamine: Not Quite Mission Impossible
John F. Bowyer, PhD
National Center for Toxicological Research/FDA

4:00 – 4:25
NMR Study of [1-13C] Glucose Metabolism and Astrocyte-Neuron-Trafficking in Manganese Neurotoxicity
Claudia Zwingman, PhD
Hospital Saint-Luc, Canada

4:25 – 4:50
Toxins and Behavior: Implications of ‘Toxicogenomics’ for Public Policy
Roger Masters, PhD
Dartmouth College, Hanover, NH
SESSION IV: Informal Workshop (Cash Bar)

ACRYLAMIDE TOXICITIES AND FOOD SAFETY

Chairs: Richard A. Canady, PhD
 Richard M. LoPachin, PhD

Acrylamide is a chemical with a variety of uses in industry including water purification, cosmetics, soil stabilization, and special grouting applications. It was first discovered to be present in certain foods as the result of work announced in Sweden in April 2002. It is a known animal carcinogen and causes nerve damage. The Swedish research and subsequent studies in Norway, Switzerland, the United Kingdom and the United States, have found that acrylamide levels in certain starch-based foods indicate a need for evaluation of risk management alternatives. Reviews of the toxicity of acrylamide have focused on occupational exposures or low-level exposures through water, not the relatively constant exposures that appear to be occurring through food. As the chair of the WHO consultation put it: "After reviewing all the available data, we have concluded that the new findings constitute a serious problem. But our current limited knowledge does not allow us to answer all the questions which have been asked by consumers, regulators and other interested parties.”.

This session will lay out the issues facing us, including rapidly developing information about exposure and toxicity, with the intention of drawing ideas from the substantial expertise at the conference regarding what is known and what should be explored for this important new toxicant in our food.

7:00 – 7:05
Creation of a Database for Use in Environmental Health Policy Activities
Jerome A. Paulson, MD
George Washington University

7:05 – 7:40
Acrylamide Contamination of Food: Risk Assessment and Regulatory Issues
Richard A. Canady, PhD
FDA/CFSAN, Division of Risk Assessment

7:40 – 8:15
Is Acrylamide Neuropathy an Axonopathy or a Terminalopathy?
Richard M. LoPachin, PhD
Albert Einstein College of Medicine

8:15 – 9:00
Panel Discussion:

Acrylamide is Widespread in our Food Supply: Do We Know Enough About Its Neurotoxicity?

Chairs: Richard Canady and Richard LoPachin

Panelists: Deborah Cory-Slechta, Jean Harry, Virginia Moser, Merle Paule, Deborah Rice, Andrew Scallet, Theodore Slotkin and Evelyn Tiffany-Castiglioni

Questions to Panel:

1) Based on the mechanistic thinking presented, are there new data needs for neurotoxicity relevant to the exposure levels expected through foods?

2) Have neurodevelopmental endpoints been adequately assessed for acrylamide?

3) What specific studies would be needed to address data gaps (if identified)?

4) What is the priority of the studies identified?
SESSION V: Parkinson’s Disease, Environment and Genes

Chairs: Cindy P. Lawler, PhD
 Marie-Francoise Chesselet, MD, PhD

A progressive disorder characterized by muscular rigidity and tremors, slow movement and impaired balance and coordination, Parkinson’s disease affects between 1 and 1.5 million people in the U.S., with 50,000 newly diagnosed cases a year. The disease is marked by the death of cells in the substantia nigra that synthesize and release the neurotransmitter dopamine. Current drug therapies, which attempt to replace the lost dopamine, can relieve some symptoms but do not cure or slow the disease. A variety of lines of evidence suggest that both environmental and genetic factors contribute to sporadic Parkinson’s Disease (PD), the most common form of the disease. This session will highlight promising new findings that provide a foundation for understanding the molecular pathways leading to PD and how environmental exposures can trigger these pathways. These findings have emerged in a variety of settings, ranging from epidemiology studies to identify risk factors for PD to the development and validation of new animal models. The integration of findings across such disciplines will be essential to understanding the puzzle of Parkinson’s disease.

8:00 – 8:25
A Novel Proteolytic Activation of PKCδ Promotes Apoptotic Cell Death in Dopaminergic Neuronal Cells during Pesticide Exposures: Relevance to Environmental Factors and Parkinson’s Disease
Anumantha Kanthasamy, PhD
Iowa State University

8:25 – 8:50
Developmental Pesticide Exposures and Subsequent Vulnerability to the Parkinson’s Disease Phenotype
Deborah A. Cory-Slechta, PhD
University of Rochester Medical School

8:50 – 9:15
Selective Dithiocarbamates Increase Synaptosomal Dopamine Content and Brain Concentrations of Paraquat and Correlation with Potentiation of MPTP and Paraquat Neurotoxicity
Eric K. Richfield, MD, PhD
University of Rochester Medical Center

9:15 – 9:25
Discussion

9:25 – 10:00
The NIEHS Collaborative Centers for Parkinson’s Disease Research Program: An Innovative Approach
Kenneth Olden, PhD - Director, National Institute of Environmental Health Sciences

10:00 - 10:15
Break

Presentations of the three new PD Centers:

10:15 – 10:45
"Environmental, Genetic and Cellular Determinants of Parkinson’s Disease” at The Parkinson’s Institute, Sunnyvale, CA with J. William Langston, M.D. as center director.
Presented by Donato Di Monte, MD

10:45 – 11:15
"The Emory Collaborative Center for PD Environmental Research” at Emory University, Atlanta, GA with J. Timothy Greenamyre, M.D., Ph.D. as center director.
Presented by Gary Miller, PhD

11:15 – 11:45
"Center for Gene-Environment Studies in Parkinson’s Disease” at the University of California at Los Angeles with Marie-Francoise Chesselet, M.D., Ph.D. as center director.
Presented by Marie-Francoise Chesselet, MD, PhD

11:45 – 11:50
Discussion

11:50 – 1:00 PM Break for Lunch

SESSION VI.
Integrative Approaches To Parkinson’s Disease Environmental Research

Chairs: Cindy Lawler, PhD and Annette Kirshner, PhD

Recent ground-breaking studies suggest that Parkinson's disease (PD) may result from a combination of a person's exposure to harmful environmental agents and the person's inherited susceptibility. What is lacking, however, is a clear mechanistic understanding of these interactions in the causation of PD. The National Institute of Environmental Health Sciences (NIEHS), a component of the National Institutes of Health, recently announced five-year grants totaling $20 million for three centers to conduct research on the relationship between exposures to environmental agents and subsequent Parkinson’s disease.

In this session the Director of NIEHS will describe how the CCPDER will provide a formal mechanism for “Cross-Talk” between PD clinicians, basic research scientists, and patients in an effort to accelerate the pace of progress in this important area. Principal Investigators or Project Directors of the three new Centers will present rationale for the approaches and framework of their program.

1:00 – 3:30PM
Reconvene for Concurrent Break-Out Sessions:

Session VII-A: (Workshop) In Conway Theater (2B)
Session VII-B: (Synaptic Function) In Harris Break Theater (2A)
SESSION VII-A (Conway Theater) (Concurrent with VII-B)
WORKSHOP/PANEL DISCUSSION:
TESTING FOR DEVELOPMENTAL NEUROTOXICITY

Chairs: William Boyes, PhD
Donald J. O’Shaughnessy, PhD

Adverse effects on the nervous system following exposure to environmental chemicals during development have been well documented. In a number of cases (e.g., lead, methylmercury) the developing nervous system appears to be a highly susceptible target. Developmental Neurotoxicity Testing (DNT) guidelines were developed and promulgated in 1991 in response to the need for regulatory-based screening methods for developmental neurotoxicity. In the first broad-scale data call-in for these data (Sept. 99), EPA expanded the scope of the 1991 guideline in recognition of the advances in the science, as well as legislation (i.e. FQPA). The purpose of this Workshop/Panel Discussion is to review history and use of the Developmental Neurotoxicity Testing guidelines, and to discuss, in a panel format, areas for improvement.

Speakers will avoid detailed description of highly focused work. Rather, they will use ongoing or recent work to exemplify development of knowledge about developmental processes, risk, and regulation.

1:00 – 1:10 Chairmen’s Overview of the Workshop on Developmental Neurotoxicity
Donald J. O’Shaughnessy, PhD
D’O’Shaughnessy Consulting
William Boyes, PhD
USEPA/NHEERL/NTD

1:10 – 1:30 Protecting Children’s Health and Development: A Non-Profit Perspective
Barbara McElgunn, RN
Learning Disabilities Association of Canada,

1:30 – 1:50 A Government Perspective on the History and Use of the Developmental Neurotoxicology Guidelines
Susan L. Makris, MS - USEPA/OPP/HED

1:50 – 2:10 Testing for Developmental Neurotoxicity: Perspective from an Industry Laboratory
Larry P. Sheets, PhD
Bayer CropScience

2:10 – 2:30 The Perspective from Academia: Biological Mechanisms versus Regulatory Issues
Theodore A. Slotkin, PhD
Duke University Medical Center

Deborah C. Rice, PhD
USEPA/NCEA

2:50 – 3:30 Round Table Discussion
Chairs: William Boyes, PhD
Donald O’Shaughnessy, PhD

3:30 – 3:45 Break

Round Table Discussion Topics

1) A review of the experience using the current guidelines. What is working well and what areas could be a focus for improvements? Data Quality, Sensitivity/discriminative power, Study Design, Training

2) Alternatives to the DNT: What is the potential for targeted guidelines designed for specific classes of compounds such as the major classes of pesticides such as carbamates or pyrethroids (i.e., if we know the mechanism of action can we do something other than a first tier “screen”?)

3) Additions to the DNT: How do we incorporate the need for pharmacokinetics and age-dependent sensitivity data, e.g., evolution of guidelines to include “relative sensitivity” evaluations and quantification of offspring exposure.

4) Introducing modern neurobiological concepts and technology to the guideline. What have we learned in the last decade that can guide, direct and improve the ability to evaluate compounds for potential developmental neurotoxicity?

SESSION VII-B. (Harris Break Theater) (Concurrent with VIIA)
NEUROTOXICANTS AND SYNAPTIC FUNCTION

Chair: William D. Atchison, PhD

Chemical synaptic transmission is the fundamental process by which information is transferred in the nervous system. This process is critical to learning and memory as well as growth and differentiation in the nervous system. It is also a surprisingly "plastic" function which can be modified in response to changes in activity in the brain. Synaptic transmission is very sensitive to the actions of a number of environmental chemicals which can affect the process on either the sending (presynaptic), or receiving (postsynaptic) ends of the process—or at multiple sites. Some of these chemicals such as lead have been proposed to alter learning and memory perhaps by actions on aspects of synaptic function. Talks in this session will focus on the variety of actions which environmental neurotoxicants have on synaptic function.

1:00 – 1:30 Presynaptic Disruption of Transmitter Release by Pb– an "Illegal Substitution"
Janusz B. Suszkiw, PhD
University of Cincinnati

1:30 – 2:00 Alcohol-Neureceptor Interactions: New Concept of the Mechanism of Action
Toshio Narahashi, PhD
Northwestern University School of Medicine

2:00 – 2:30 Disruption of GABAergic Function of Cerebellum by Methylmercury: A Possible Approach to Differential Vulnerability
William D. Atchison, PhD
Michigan State University

2:30 – 3:00 Chronic Exposure to NMDA Receptor and Sodium Channel Blockers During Development in Monkeys and Rats: Long-term Effects on Cognitive Function
Merle G. Paule, PhD - NCTR & UAMS

3:00 – 3:30 Discussion
SESSION VIII.

BIOLOGICAL AND CHEMICAL TERRORISM

Chairs: Larry E. Wright and James L. Bacon

This session addresses Post 9-11 activities in chemical biological matters ranging from scientific findings on agent exposure to evolving national policy on homeland defense. Topics include the expansion of the nation’s warfighting spectrum into a “two-front” war, the chemical and biological expertise located at the US Army Pine Bluff Arsenal, and the Arkansas Economic Development initiative to secure the nation’s vaccine production facility. Through decades of experience with chemical and biological warfare, the nation’s military is uniquely qualified to support homeland defense and domestic preparedness. Pine Bluff Arsenal has over 60 years of chemical and biological program management and unmatched expertise in insuring effective protection from agent contaminants. Well before the 9-11 attack, Pine Bluff Arsenal participated in technology transfer programs to assist municipalities, through the Department of Justice and the American Red Cross in the area of Homeland Defense and Weapons of Mass Destruction Awareness Training for first responders. The unusually high concentration of military, federal and academic resources in central Arkansas (including the Pine Bluff Arsenal, National Center for Toxicological Research, Arkansas Regional Laboratories, Arkansas National Guard Professional Education Center, University of Arkansas for Medical Science and the Little Rock Air Force Base) command centrally located and established expertise to support Chemical and Biological Counter-Terrorism. Due to favorable assets, a 1994 government study indicated the Pine Bluff Arsenal as the “best” and most economical location for a government-owned vaccine production facility. The Army and Arkansas continue to develop programs to support the Nation’s war on terror.

3:45 – 4:15

Chemical Terrorism: Chemicals of Concern and a Prospective Examination of Laboratory Preparedness

Jimmie L. Valentine, PhD
UAMS & Arkansas Children’s Hospital

4:15 – 4:45

Sarin-Induced Neuronal Degeneration: Unexpected New Findings

Mohamed B. Abou-Donia, PhD
Duke University Medical Center

4:45 – 5:30

National Chemical Biological Defense Security Policy and Readiness in a Post 9-11 Era – Fighting a Two-Front War

Colonel Mark R. Henscheid
Commander, Pine Bluff Arsenal

Biological and Chemical Terrorism: The Role of the Pine Bluff Arsenal

Larry E. Wright
Civilian Executive Assistant, Pine Bluff Arsenal

Arkansas’ Initiative to Secure the Nation’s Vaccine Production Facility

James L. Bacon
Chairman of the Governor’s Task Force for Acquisition of the DoD Vaccine Production Facility

Invitation to Conference Participants to a Specially Arranged Tour of The Pine Bluff Arsenal: Pictures and Agenda
7:00 – 9:00 Posters Attended and Discussed

Presentation of papers from poster and informal discussion are a highlight of this meeting. This is an excellent venue to discuss research details and form collaborations.

Free communications from poster on any topic of neuroscience and toxicology are welcome. Selection of Pre-Doctoral and Postdoctoral Awardees will be made at this time. Cash and Plaques will be presented to the 1st, 2nd and 3rd place winners on Thursday afternoon.

Pre-Doctoral Student Award Competition

Pre-Doctoral Award Committee

Richard Seegal, PhD, Chair
Donato Di Monte, MD
Richard LoPachin, PhD
Virginia Moser, PhD

Pre-Doctoral Students

C. Filibrandt Mentor: Thomas A. Gasiewicz, PhD
EK Gray Mentor: Sherry Ferguson, PhD
S. Kaul Mentor: AG Kanthasamy, PhD
M. Kitazawa Mentor: AG Kanthasamy, PhD
J. Trived Mentor: Manish Nivsarkar, PhD
MA Williamson Mentor: Lisa Opanashuk, PhD
LKM Wright Mentor: MG Paule, PhD
Y. Yang Mentor: AG Kanthasamy, PhD
B. Zim Mentor: Guenter W. Gross, PhD

Post-Doctoral Student Award Competition

Post-Doctoral Award Committee

Toshio Narahashi, PhD, Chair
Jean Harry, PhD
Eric K. Richfield, MD, PhD

Post-Doctoral Students

TK Garg, PhD Mentor: Jason Y. Chang, PhD
RL Jakab, PhD Mentor: John F. Bowyer, PhD
JR Richardson, PhD Mentor: Gary W. Miller, PhD
D. Surcel, PhD Mentor: M. Butan, PhD
Y. Xu, PhD Mentor: Syed Ali, PhD

Thursday Morning 21 NOV 2002 8:30 – 11:30 AM

SESSION X.
CONSEQUENCES OF EXPOSURE FROM PERSISTENT ORGANIC POLLUTANTS

Chair: Deborah C. Rice, PhD

In May 2001, representatives from over 100 countries convened in Stockholm to sign a treaty for the reduction of persistent organic pollutants (POPs). The initial list of 12 chemicals includes polychlorinated biphenyls (PCBs), dioxins, furans, hexachlorobenzene, and the pesticides aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, mirex, and toxaphene. These chemicals bioconcentrate and bioaccumulate up the food chain, and are persistent in the environment. They are found in particularly high concentrations in animals and humans in circumpolar regions. This symposium will focus on the health effects associated with human exposure to these contaminants.

8:30 – 8:50 Global Cycling of Persistent Organic Pollutants (POPs) and Session Overview
Deborah C. Rice, PhD
National Center for Environmental Assessment/EPA

8:50 – 9:30 Specific Behavioral Effects Associated with POPs in Children in a Community of Great Lakes Fish Eaters
Paul W. Stewart, PhD
State University of New York, Oswego

9:30 – 10:10 Specific Behaviors of Prenatal PCB Exposure on Attention and Behavior in School Age Children
Joseph. Jacobson, PhD
Wayne State University School of Medicine

10:10 – 10:15 Discussion

10:15 – 10:30 Break

10:30 – 10:50 Developmental Effects of PCBs and Methylmercury on Striatal Dopamine
Richard F. Seegal, PhD
Wadsworth Center, New York State Department of Health

10:50 – 11:10 Lead Induced Stress Responses in the Endoplasmic Reticulum (ER) of Glia
Evelyn Tiffany-Castiglioni, PhD
Texas A&M University, College Station, TX

11:10 – 11:30 Maternal Exposure to Dioxin Causes Permanent or Semi-Permanent Dysfunction in the Frontal Cortex of Rat Offspring at Behavioral and Molecular Levels
Masaki Kakeyama, PhD
National Institute for Environmental Studies, Onogawa, Tsukuba, Japan
Thursday Morning 21 NOV 2002 11:30 – 11:45 AM

SESSION XI.
PRESENTATION OF STUDENT AWARDS

Chair: Joan M. Cranmer, PhD

Announce Pre-Doctoral Award Winners
Richard F. Seegal, PhD, Committee Chair

Announce Post-Doctoral Award Winners
Toshio Narahashi, PhD, Committee Chair

Present Awards
Morris F. Cranmer, PhD - Sponsor of Student Awards,
Cranmer and Associates, Inc.

11:45 – 1:00 PM Break for Lunch

1:00 – 1:10 PM Board Buses for tours of the
 Pine Bluff Arsenal & NCTR

Thursday Afternoon 21 NOV 2002 1:00 – 5:15 PM

SESSION XII.
TOURS OF THE PINE BLUFF ARSENAL & NCTR

1:10 PM Sharp! Buses Depart The Peabody Hotel

PINE BLUFF ARSENAL TOURS

♦ Clara Barton Red Cross Domestic Preparedness Center
 Mr. Dave Chapman and Mr. Don Cleveland

♦ Tour M291 Skin Decontamination Kit Mfg. Facility
 (FDA Approved Device)
 Dr. David Smith

♦ Windshield Tour Chemical Demilitarization Facility

NCTR TOURS - Organized by William Slikker, PhD

♦ Division of Neurotoxicology
♦ Genomics and Proteomics Centers
♦ Nonhuman Primate Center

4:25 PM Buses Depart NCTR for The Peabody Hotel.

5:15 PM Buses arrive The Peabody Hotel

Thursday Evening 21 NOV 2002 6:30 PM...

 Social Evening & Closing of the Conference

 6:00 PM
 Cash Bar and Camaraderie

 7:00 PM
 Hosted Dinner in the Pinnacle
 Top floor of The Peabody Hotel